
Automated Tunneling Over IP Land: Run NDN Anywhere
Arthi Padmanabhan

UCLA
artpad@cs.ucla.edu

Lan Wang
University of Memphis
lanwang@memphis.edu

Lixia Zhang
UCLA

lixia@cs.ucla.edu

ABSTRACT
Named Data Networking (NDN) proposes a fundamental architec-
tural change to the Internet, moving from point-to-point communi-
cation to a data-centric model. NDN-enabled nodes can communi-
cate over any substrate that can deliver datagrams, such as layer-2
links (WiFi, BLE, Ethernet, etc.) and IP/UDP/TCP tunnels over IP
connectivity. However in the latter case, NDN-enabled nodes must
be able to discover the presence of each other and the data each
serves in an automated way. This poster describes the design of
an NDN Neighbor Discovery service (NDND), which enables iso-
lated NDN nodes to discover each other and interconnect through
tunneling over IP connectivity.

CCS CONCEPTS
• Networks → Network protocol design;

KEYWORDS
Named Data Networking, deployment, rendezvous

ACM Reference format:
Arthi Padmanabhan, Lan Wang, and Lixia Zhang. 2018. Automated Tunnel-
ing Over IP Land: Run NDN Anywhere. In Proceedings of 5th ACMConference
on Information-Centric Networking, Boston, MA, USA, September 21–23, 2018
(ICN ’18), 2 pages.
DOI: 10.1145/3267955.3269023

1 INTRODUCTION
Named Data Networking (NDN) [3] is a proposed data-centric
Internet architecture. In an NDN network, communication is ac-
complished by requesting named and secured data packets. To
successfully deploy an architectural change of this scale, it is es-
sential that NDN-enabled nodes are able to communicate over the
existing network infrastructure. In pursuing this goal over the last
few years, we identi�ed several issues as explained below.

First, in principle, NDN nodes on the same subnet should be able
to communicate directly using layer-2 frames. Unfortunately, as we
reported in [2], three major roadblocks makes it infeasible in many
practical settings: the absence of a standard cross-platform API to
use network interfaces, the language restrictions imposed by vari-
ous platforms, and most importantly, the lack of access to low-level
network APIs by the common platforms (e.g. Linux, macOS, and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICN ’18, Boston, MA, USA
© 2018 Copyright held by the owner/author(s). 978-1-4503-5959-7/18/09. . . $15.00
DOI: 10.1145/3267955.3269023

Android), perhaps due to (perceived/potential) security concerns. 1

In such cases, NDN nodes must resort to using IP connectivity for
interconnectivity, which can be achieved through UDP/IP tunnels.

Second, setting up tunnels in between requires NDN nodes to dis-
cover each other. Again in principle, NDN nodes on the same subnet
should be able to discover each other via IP multicast; however in
practice, many networks restrict the use of multicast. For example,
airport WiFi networks usually disable local multicast support due
to the concern of potential abuse by DoS attackers. One may resort
to manual con�gurations to set up tunnels between NDN nodes.
However such manual con�guration is tedious, error-prone, and
di�cult to maintain due to various changes over time (e.g. network
recon�gurations, new NDN node additions).

Third, in many places network operators even forbid unicast
tra�c between IP nodes on the same subnet, again due to security
concerns of virus and other malware infection.

To summarize: in many cases NDN nodes need to communicate
over IP connectivity, i.e. over UDP/IP tunnels, and establishment
of these tunnels require the support for automatic discovery of
the NDN nodes’ IP addresses and their data name pre�xes. In case
nodes cannot send IP unicast packet to each other, NDN tra�c
between them may need to travel through an NDN relay node.

In this poster, we describe the design of a rendezvous service
for NDN nodes on the same IP subnet to automatically discover
each other’s IP addresses and data name pre�xes, so that they can
establish NDN connectivity among themselves by setting up UDP/IP
tunnels. We dub this design NDND, NDN Neighbor Discovery.

Figure 1: NDN Neighbor Discovery Protocol

The basic idea of NDND is straightforward. We set up a ren-
dezvous server with a well known DNS name NRV and a speci�c
UDP port number, and con�gure each isolated NDN node with NRV
and the port number. 2 An NDN node can then use the standard
DNS resolution to learn NRV ’s IP address, sending its own IP ad-
dress and NDN data names in a UDP packet to NRV , and receiving

1We note that single-app platforms, such as RIOT-OS and Electric Imp, usually give
the application full access to the system, including direct low-level APIs.
2We con�gure NDN nodes with NRV ’s DNS name instead of directly using IP addresses
for agility, sheltering NDN nodes from the number of NRV s and their address changes.

ICN ’18, September 21–23, 2018, Boston, MA, USA Arthi Padmanabhan, Lan Wang, and Lixia Zhang

the information about other NDN nodes from NRV . When IP uni-
cast between certain NDN nodes is also prohibited, NRV can also
help forward NDN Interest and Data packets between these nodes.

The discussion in this poster focuses on the simplest case of
interconnecting isolated NDN nodes on the same subnet. We plan
to expand the NDND service to interconnections of these islands
across wider areas via similar tunneling over IP.

2 NEIGHBOR DISCOVERY PROTOCOL
The NDND service is made of three pieces: rendezvous server(s) RV,
a neighbor discovery application (nd-app) running at each NDN
node, and a Neighbor Discovery Protocol. The nd-app collects the
local node’s name pre�xes, and uses the Neighbor Discovery pro-
tocol to communicate with the rendezvous server RV to report its
own IP address and the pre�xes it serves, and retrieve the informa-
tion about other NDN nodes. We start with the assumption that the
local network prohibits IP multicast but allows IP unicast between
hosts on the same network. We also assume that all the involved
NDN nodes and the RV share a common trust anchor, so that they
can authenticate each other’s data exchanges.

2.1 Collecting application pre�xes on each
node

Each application running on an NDN node registers the pre�xes
it serves with the nd-app by sending an Interest with name “/ndn
/servicediscovery/prefixregistration”, containing the pre�xes
in the Interest’s Parameters �eld [1]. For example, a camera app
may register the pre�x “/username/camera”. The nd-app at the
node collects all the pre�xes in preparation for sending them to RV.

2.2 Communication between node and RV
Each node’s nd-app must be con�gured with an RV name, which
it can resolve to an IP address using DNS. The nd-app then com-
municates with RV using the NDND protocol whose packets are
carried in UDP messages, as shown in Figure 2.

A node N ’s nd-app aggregates its pre�xes and IP address into
a message of type “IP_PREFIX_MAPPING”, uses its key to sign it,
and sends the message to RV. If N is behind a NAT router, the
IP address it sends should be its private address, for communi-
cation with other nodes in the same local network. When RV
receives N ’s “IP_PREFIX_MAPPING” message, it �rst authenticates
the message, then adds the mapping to its local storage of all
the IP-Pre�x mappings it has received. If an entry for the IP ad-
dress exists already, RV replaces the pre�x list with the newly
received list. Otherwise, RV creates a new mapping. RV then re-
sponds to N with a message of type “IP_PREFIX_MAPPING_LIST”,
which contains all known mappings. If N does not receive a re-
sponse within some expected time period, it will retransmit the
“IP_PREFIX_MAPPING” message. To keep itself up to date, nd-app
sends an “UPDATE_REQUEST” periodically. In response, the RV sends
its latest “IP_PREFIX_MAPPING_LIST”.

2.3 Storage and usage of information
Once a node receives IP-pre�x mappings for other nodes, it can
create UDP-IP tunnels to them and store in its FIB the pre�xes that
can be served by each tunnel. However, it is sometimes wasteful

Figure 2: Neighbor Discovery Protocol

for every node to store every pre�x it receives. For example, in a
building maintenance application, sensors need to communicate
with the repo but not with other sensors. Therefore, individual ap-
plications within a node must explicitly request to the nd-app their
pre�xes of interest. The form of this request is a standard NDN Inter-
est packet starting with “/ndn/servicediscovery/prefixrequest”.
The nd-app will �lter the IP-Pre�x mapping list received from RV
and only add routes for requested pre�xes. This helps to maintain
only relevant information in the FIB.

3 FUTUREWORK
Our current protocol serves nodes in local networks that restrict
multicast but allow unicast. As a next step, we plan to extend Neigh-
bor Discovery to support nodes in networks that also restrict uni-
cast, which is common in public WiFi networks. In such networks,
the rendezvous server needs to relay all NDN communication be-
tween NDN nodes. Another extension is to address interconnection
of nodes beyond a local network. We also plan to adjust the protocol
to allow optimization at RV before it sends its mapping list back
to each node. Finally, while the current communication between
each node and RV uses UDP messages, there is bene�t in changing
this communication to NDN Interest and Data exchange, to make
it independent from underlying transport method (only the tunnel
establishment part needs to change, which is straight-forward).

ACKNOWLEDGMENTS
This work is partially supported by the US National Science Founda-
tion under awards CNS-1719403, CNS-1629922, and CNS-1629769.

REFERENCES
[1] NDN Packet Format Speci�cation. https://named-data.net/doc/ndn-tlv/.
[2] Wentao Shang, Alex Afanasyev, Yanbiao Li, Je� Burke, and Lixia Zhang. Device-

to-device communication with Named Data Networking. In Proceedings of the 4th
ACM Conference on Information-Centric Networking, 2017.

[3] Lixia Zhang et al. Named Data Networking. ACM Computer Communication
Review, July 2014.

	Abstract
	1 Introduction
	2 Neighbor Discovery Protocol
	2.1 Collecting application prefixes on each node
	2.2 Communication between node and RV
	2.3 Storage and usage of information

	3 Future Work
	Acknowledgments
	References

